109 台聯大命中

1. 第21題:

- 21. One of the major categories of receptors in the plasma membrane functions by forming dimers, adding phosphate groups, and then activating relay proteins. Which type does this?
- (A) G protein-coupled receptors
- (B) receptor tyrosine kinases

(C) steroid receptors

(D) ligand-gated ion channels

(E) glycolipid

答案:(B)

₩解析:

質膜中受體通過形成二聚體,添加磷酸基團,然後激活中繼蛋白來發揮作用為受體 酪氨酸激酶 (receptor tyrosine kinases),故選(B)。

接受器在細胞膜表面Receptors in the plasma membrane如下表:

類型	特色
G蛋白偶聯受體	(1)接受器會與細胞膜的G蛋白連接。
(G Protein-Coupled	(2)分子開闢著的是GTP (ON)或是GDP (OFF)來決定是否
Receptors)	為活化態。
	(3)傳訊分子,例如:酵母菌的交配因子、腎上腺素
	(epinephrine、許多賀爾蒙、神經傳導物質。
	(4)許多人類疾病都和G蛋白系統有關,會產生有毒物質
	來干擾G蛋白的功能。
酪胺酸激酶接受器	(1)訊息分子(如生長因子,insulin)結合時,兩個單體
(receptor tyrosine kinase,	受器結合在一起,形成雙體的複合體(二聚體化
RTKs)	dimerization) •
	(2)會致活每一多肽的酪胺酸激酶部位,將ATP分子上的
	一個磷酸基添加至另一多肽之尾部的酪胺酸上。
	(3)接受器本身有「酵素」的功能,當訊息分子與接受器
	結合時,接受器因而被活化,而具有磷酸化的功能。
配體門控離子通道接受器	訊息分子結合上接受器像門 (gate的開或關,離子如Na+
(Ligand-gate ion channel	或k ⁺ ,流入或出細胞內導致膜電位(membrane potential)
receptor)	改變。

命中出處 生物第一回 p. 194

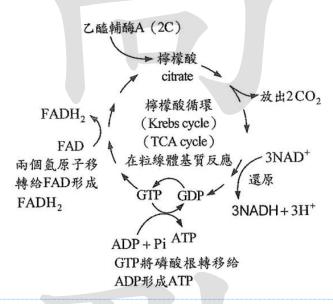
重點 2:接受器在細胞膜表面 Receptors in the plasma membrane

細胞表面的接受器分子在動物生物系統中非常重要,許多人類疾病都與接受器的功能異常有關。主要三類型:G蛋白偶聯受體(G Protein-Coupled Receptors); 酪胺酸激酶接受器(receptor tyrosine kinase, RTKs); 配體門控離子通道接受器(Ligand-gate ion channel receptor)

2. 第22題:

- 22. Which electron carrier(s) function in the citric acid cycle?
- (A) NAD+ only

- (B) ADP and ATP
- (C) the electron transport chain
- (D) NADH and FADH₂


(E) Glucose

答案:(D)

₩解析:

乙醯基進入檸檬酸循環,經由酵素作用將它們氧化成二氧化碳;而釋出的能量則保留在還原態的電子攜帶者NADH和FADH2之中,故選(D)。

檸檬酸循環(克氏循環) TCA Cycle結果:產生3NADH,1ATP,1FADH2,放出 2CO2如簡圖:

命中出處 生物第二回 p. 74

重點 6:有氧呼吸第三個階段檸檬酸循環(克氏循環) TCA Cycle

- 1. 於 1953 年英國生化學家克瑞布斯(Hans Adolf Krebs)獲得諾貝爾生理醫學獎,故檸檬酸循環又稱克氏循環(Krebs cycle)因檸檬酸含三個羧基,故此循環又稱三羧酸循環(Tricarboxylic acid cycle,TCA cycle)
- 2. 發生於粒線體基質(matrix)
- 3. 當丙酮酸被分解成三個分子的 CO_2 時的輸入和輸出情形,它包括在丙酮酸轉換成乙醯輔酶 A 之前的檸檬酸循環(pre-Krebs cycle)步驟中釋出的 CO_2 分子。
- 4. ATP 形成過程屬於受質階層磷酸化(藉酵素催化,將受質上的磷酸根轉移到 ADP
- 5. 整個週期有8個步驟,每個都被特殊酵素給催化
 - (1) 步驟1: 乙醯輔酶A (2C) + 草醯乙酸鹽(Oxaloacetate)(4C), 形成檸檬酸鹽(citrate)(6C)
 - (2) 步驟 2: 先減去一分子水,隨後再補上另一分子水,使檸檬酸鹽轉化成異構物,異檸檬酸鹽(isocitrate)

- (3) 步驟 3:異檸檬酸鹽丟失一分子 CO₂,剩餘部分被氧化,形成 a-酮戊二酸鹽 (a-ketoglutarate),並使 NAD⁺還原成 NADH
- (4) 步驟 4:另一 CO₂ 遺失,使剩餘部分被氧化,將 NAD⁺還原成 NADH。剩餘部分隨 後以不穩定的鍵結與輔酶 A 鍵結,形成琥珀醯輔酶 A(Succinyl CoA)
- (5) 步驟 5:受質磷酸化發生在此步驟:輔酶 A 被一個磷酸根給取代,磷酸根隨後轉移給 GDP,形成 GTP。GTP與 ATP類似,當 GTP將磷酸根轉移給 ADP,則形成 ATP。
- (6) 步驟 6:兩個氫離子被轉移到 FAD,形成 FADH₂,留下延胡索酸鹽(fumarate)
- (7) 步驟 7:加入一分子水,使受質的鍵結重新排列,形成蘋果酸(malate)
- (8) 步驟 8:產生另一個 NADH,並再生草醯乙酸鹽(oxaloacetate)
- 6. 總結:產生 3NADH, 1ATP, 1FADH2, 放出 2CO2

3. 第23題:

- 23. Which of the following sequences correctly represents the flow of electrons during photosynthesis?
- (A) NADPH \rightarrow O₂ \rightarrow CO₂
- (B) NADPH → chlorophyll → Calvin cycle
- (C) $H_2O \rightarrow NADPH \rightarrow Calvin cycle$
- (D) NADPH \rightarrow electron transport chain \rightarrow O₂
- (E) Pyruvate → ATP → Calvin cycle

答案:(C)

₩解析:

光合作用的電子流 $H_2O \rightarrow NADPH \rightarrow$ 卡爾文循環,比較如下表,故選(C)。 光合作用兩種電子傳遞鏈比較:

	非循環式 (linear electron flow) (noncyclic electron flow)	循環式 (cyclic electron flow)
光系統	PS II (P680) \ PSI (P700)	PS I (P700)
水裂解	$1H_2O \rightarrow 1/2O_2 + 2H^+ + 2e^-$	無
過程	PS II的反應中心P680的葉線素a激發電子後傳給質體醌plastoquinone (Pq) → 細胞色素複合物cytochrome complex經酵素ATPase的催化作用產生ATP → 質體藍素plastocyanin (Pc) →PS I → 鐵氧還原蛋白(ferredoxin, (Fd) 電子轉移到NADP+,再從基質(stroma)移走H+,形成NADPH+H+	cytochrome complex經酵素ATPase 的催化作用產生ATP再傳給 plastocyanin (Pc) 又回到PS I的反應
產物	ATP \cdot NADPH \cdot O ₂	АТР
作用	產生ATP,NADPH給卡爾文循環	補充ATP之供給

命中出處 生物第二回 p. 123

3. 光反應兩種電子傳遞鏈比較:

	循環式電子傳遞鏈	非循環式電子傳遞鏈
參與的 光系統	PSI	PSI · PSII
光裂解 作用	無	有(PSII 失去的電子經光裂解作用補充)
產物	6ATP	12ATP · 12NADPH · 6O ₂
特色	沒產生氧和 NADPH	將光能轉變化學能
過程	PSI 的反應中心受光激發後,電子經電子傳遞 鏈後回到 PSI 的反應 中心。	PSII 的反應中心受光激發後,電子經電子 傳遞鏈由 PSI 接收,最終電子由氧化性輔酶 NADP ⁺ 接受並合成 NADPH。
傳遞 順序	P700→電子傳遞鏈 →P700	水→P680→電子傳遞鏈→P700→電子傳遞鏈 →NADP ⁺

4. 第24題:

- 24. At the M phase checkpoint, the complex allows for what to occur?
- (A) Separase enzyme cleaves cohesins and allows chromatids to separate
- (B) Cohesins alter separase to allow chromatids to separate
- (C) Daughter cells are allowed to pass into Gl
- (D) All microtubules are made to bind to kinetochores
- (E) Kinetochores are able to bind to spindle microtubules

答案:(A)

₩解析:

黏附素 (cohesins) 被分離酶 (Separase enzyme) 水解後染色單體才能分離,進入細胞分裂 (M階段),細胞週期調控點 (checkpoint) 如下表,故選(A)。

調控點	特徵		
G1 checkpoint	(1)檢查細胞的大小、營養、生長因子、DNA是否有受損。 (2)如果細胞在G1查核點沒有收到前進訊號,該細胞將離開細胞週期,並且進入G0(不分裂狀態)。 (3)在動物細胞稱為Restriction point,在酵母菌稱為Start。		

命中出處

生物第一回 p.140

重點 2:染色體與細胞分裂

- 1. 真核生物細胞分裂過程中,染色體修復和分配的關鍵是三種相互聯繫的蛋白質複合體: Cohesin, Condensin,和染色體結構維持蛋白複合物(structural maintenance of chromosome, SMC)。
- 2. condensin:使染色體濃縮更緊湊
- 3. cohesin 黏蛋白:使姊妹分體能靠在一起。
 - (1) 當姊妹分體要分離時, cohesin 會被一種蛋白酶 protease-separase 水解。
 - (2) 平常 separase 不活化,被抑制次單位-securin 所附著,但姊妹分體與紡錘絲附著,則 securin 會被水解,而 separase 活化,分解 cohesin,此過程稱為 spindle checkpoint。

生物第一回 p.152

重點 10:細胞週期調控點

一、細胞週期調控系統會在內建時鐘的驅使之下自動往前行。在多處關卡受到內在和外在的 調控。在真核細胞的細胞週期中,有三個檢查調控點:

調控點	特徵	
G1 phase	 稱為 G1 checkpoint,主要檢查細胞的大小、營養、生長因子、和 DNA 是否有受損。 如果細胞在 G1 查核點收到前進訊號,該細胞將繼續沿細胞週期往前行。 如果細胞在 G1 查核點沒有收到前進訊號,該細胞將離開細胞週期,並且進入 G0(不分裂狀態)。 在動物細胞稱為 Restriction point,在酵母菌稱為 Start。 	
G2 phase	稱之為 G2 checkpoint,主要檢查細胞的大小和 DNA 是否完全複製。	
M phase	 稱為 Spindle assembly checkpoint,主要檢查染色體是否附著紡錘體上, 監測每條染色體的微管與紡錘體兩極相連 檢查與平恒系統(check and balance system):此系統使微管附著在複製後 染色體的二個著絲點上量才能平均且才能使染色體移向細胞中線 	