- 24. Which complex below is the one with d-d transition that absorbs photons with the highest energy?
 - (A) $[CrF_6]^{3-}$
- (B) $\left[\operatorname{CrCl}_{6}\right]^{3}$
- (C) $[Cr(CN)_6]^{3+}$

- (D) $[Cr(NH_3)_6]^{3+}$
- (E) $[Cr(H_2O)_6]^{3+}$

ANS: (C)

命中出處普化第八回 p. 17

* 影響10Dq 大小之重要因素:

一、金屬種類:

5d>4d>3d (d 軌域種類): 通常多數之4d,5d 金屬不論配位基為何皆為強場

錯合物

二、金屬氧化態:

M³+>M²+: 金屬氧化態愈高者,10Dq愈大,2+→3+可增加50%Dq

*但電荷增加過多時,往往 Dq 的增加速率會愈來愈小,下面的序列說明了判定

上的不容易:(愈高正電荷,愈重的金屬離子 Dq 愈大)

 $Mn^{2+} < V^{2+} < Co^{2+} < Fe^{2+} < Ni^{2+} < Fe^{3+} < Co^{3+} < Mn^{4+} < Mo^{3+} < Rh^{3+} < Ru^{3+} < Co^{3+} < Mn^{4+} < Mo^{3+} < Rh^{3+} < Ru^{3+} < Co^{3+} < Mn^{4+} < Mo^{3+} < Rh^{3+} < Ru^{3+} < Co^{3+} < Mn^{4+} < Mo^{3+} < Rh^{3+} < Ru^{3+} < Rh^{3+} < Rh^{3$

 $Pd^{4+} < Ir^{3+} < Pt^{4+}$

Ref: Atkins 無機

Increasing A (Fixed Ligand)

 $Mn^{2+} < Co^{2+} \sim Ni^{2+} \sim Fe^{2+} < V^{2+} < Fe^{3+} < Cr^{5+} < V^{5+} < Co^{5+} < Mn^{4+} < Mo^{3+} < Rh^{3+} < Ru^{3+} < Ir^{3+} < Re^{4+} < Pt^{4+}$

三、分子幾何:

錯合物分子幾何結構亦會影響 10Dq 大小

正八面體六配位錯合物 > 正四面體錯合物之 10Dq

**d1~d9之正四面體錯合物多數為弱場高自旋

EX: CoCl₄²⁻, Co²⁺, d7.....

**d0, d10, d5 之四配位錯合物則必為 sp3 混成正四面體分子幾何!

EX: $TiCl_4$, Ti^{4+} , d0; $Ni(CO)_4$, Ni(0), d10,....

**d8, d9 之四配位錯合物如為強場配位基,或 4d, 5d 重金屬者,只要配位基不要

太大,皆為方形平面錯合物!

Ni(CN)₄², Ni²⁺, d8, CN (strong field ligand)

PdCl₄²⁻, Pd²⁺, d8, (4d metal)

PtCl₄²⁻, Pt²⁺, d8, (5d metal)

CuCl42-, Cu2+, d9 (在室溫下才為方形平面,高溫下為四面體)

四、配位基種類:

配位基只對 3d 金屬有較大的影響,可分為強弱場配位基

對配位基之場的強弱給定一個序列:光譜化學序列(Spectrochemical series)

 $CN^{-} > NO_{2}^{-} > en > NH_{3} > H_{2}O > C_{2}O_{4}^{2-} > HO^{-} > F^{-} > Cl^{-} > Br^{-} > \Gamma$

通常以水及氣為界,氣以上為強場,水以下為弱場。